Ginsenoside Rb1 Protects Neonatal Rat Cardiomyocytes from Hypoxia/Ischemia Induced Apoptosis and Inhibits Activation of the Mitochondrial Apoptotic Pathway
نویسندگان
چکیده
Aim. To investigate the effect of Ginsenoside Rb1 (GS-Rb1) on hypoxia/ischemia (H/I) injury in cardiomyocytes in vitro and the mitochondrial apoptotic pathway mediated mechanism. Methods. Neonatal rat cardiomyocytes (NRCMs) for the H/I groups were kept in DMEM without glucose and serum, and were placed into a hypoxic jar for 24 h. GS-Rb1 at concentrations from 2.5 to 40 µM was given during hypoxic period for 24 h. NRCMs injury was determined by MTT and lactate dehydrogenase (LDH) leakage assay. Cell apoptosis, ROS accumulation, and mitochondrial membrane potential (MMP) were assessed by flow cytometry. Cytosolic translocation of mitochondrial cytochrome c and Bcl-2 family proteins were determined by Western blot. Caspase-3 and caspase-9 activities were determined by the assay kit. Results. GS-Rb1 significantly reduced cell death and LDH leakage induced by H/I. It also reduced H/I induced NRCMs apoptosis induced by H/I, in accordance with a minimal reactive oxygen species (ROS) burst. Moreover, GS-Rb1 markedly decreased the translocation of cytochrome c from the mitochondria to the cytosol, increased the Bcl-2/ Bax ratio, and preserved mitochondrial transmembrane potential (ΔΨm). Its administration also inhibited activities of caspase-9 and caspase-3. Conclusion. Administration of GS-Rb1 during H/I in vitro is involved in cardioprotection by inhibiting apoptosis, which may be due to inhibition of the mitochondrial apoptotic pathway.
منابع مشابه
Protective effect of bioactive compounds from Lonicera japonica Thunb. against H2O2-induced cytotoxicity using neonatal rat cardiomyocytes
Objective(s):Pharmacological studies showed that the extracts of Jin Yin Hua and its active constituents have lipid lowering, antipyretic, hepatoprotective, cytoprotective, antimicrobial, antibiotic, antioxidative, antiviral, and anti-inflammatory effects. The purpose of the present study was to investigate the protective effects of caffeoylquinic acids (CQAs) from Jin Yin Hua against hydrogen ...
متن کاملGinsenoside-Rb1 Protects Hypoxic- and Ischemic-Damaged Cardiomyocytes by Regulating Expression of miRNAs
Ginsenoside (GS-Rb1) is one of the most important active compounds of ginseng, with extensive evidence of its cardioprotective properties. However, the miRNA mediated mechanism of GS-Rb1 on cardiomyocytes remains unclear. Here, the roles of miRNAs in cardioprotective activity of GS-Rb1 were investigated in hypoxic- and ischemic-damaged cardiomyocytes. Neonatal rat cardiomyocytes (NRCMs) were fi...
متن کاملGinsenoside Rb1 protects rat retinal ganglion cells against hypoxia and oxidative stress.
The current study was designed to investigate the effect of ginsenoside Rb1 (Rb1) on apoptosis induced by hypoxia and oxidative stress in a retinal ganglion cell line (RGC-5). The underlying mechanism was also investigated. RGC-5 cells were pretreated with 10 µmol/l Rb1 for 24 h and exposed to 400 µmol/l cobalt chloride (CoCl2) for 48 h or 600 µmol/l H2O2 for 24 h. The percentage of cells activ...
متن کاملCardioprotection by combination of three compounds from ShengMai preparations in mice with myocardial ischemia/reperfusion injury through AMPK activation-mediated mitochondrial fission
GRS is a drug combination of three active components including ginsenoside Rb1, ruscogenin and schisandrin. It derived from the well-known TCM formula ShengMai preparations, a widely used traditional Chinese medicine for the treatment of cardiovascular diseases in clinic. The present study explores the cardioprotective effects of GRS on myocardial ischemia/reperfusion (MI/R) injury compared wit...
متن کاملMicroRNA-145 Protects Cardiomyocytes against Hydrogen Peroxide (H2O2)-Induced Apoptosis through Targeting the Mitochondria Apoptotic Pathway
MicroRNAs, a class of small and non-encoding RNAs that transcriptionally or post-transcriptionally modulate the expression of their target genes, has been implicated as critical regulatory molecules in many cardiovascular diseases, including ischemia/reperfusion induced cardiac injury. Here, we report microRNA-145, a tumor suppressor miRNA, can protect cardiomyocytes from hydrogen peroxide H₂O₂...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014